WRITTEN HOMEWORK \#6, DUE FEB 26, 2010

(1) (Chapter 17.5, \#21, 22)
(a) Show that any vector field of the form

$$
\mathbf{F}(x, y, z)=\langle f(x), g(y), h(z)\rangle
$$

is irrotational. (This means that $\nabla \times \mathbf{F}=\mathbf{0}$.)
(b) Show that any vector field of the form

$$
\mathbf{F}(x, y, z)=\langle f(y, z), g(x, z), h(x, y)\rangle
$$

is incompressible. (This means that $\nabla \cdot \mathbf{F}=0$.)
(2) (Chapter $17.6, \# 38)$ Find the area of the part of the plane $2 x+5 y+z=10$ which satisfies $x^{2}+y^{2} \leq 9$.
(3) (Chapter 17.6, \#46) Find the area of the helicoid (spiral ramp) with parameterization

$$
\mathbf{r}(u, v)=\langle u \cos v, u \sin v, v\rangle, 0 \leq u \leq 1,0 \leq v \leq \pi .
$$

(For a picture of this surface, see figure IV of page 1115 in the text.)
(4) (Chapter 17.7, $\# 20$) Let $\mathbf{F}=\left\langle y, x, z^{2}\right\rangle$. If S is the helicoid from the previous problem, find the surface integral of \mathbf{F} over S. (The orientation is the one which points in the same direction as the fundamental vector product).
(5) (Chapter 17.7, \#22) Let $\mathbf{F}=\left\langle x, y, z^{4}\right\rangle$. Let S be the part of the cone $z=\sqrt{x^{2}+y^{2}}$ which lies beneath $z=1$, with downwards pointing orientation. Find the surface integral of \mathbf{F} over S.
(6) (Chapter 17.7, \#27) Let $\mathbf{F}=\langle x, 2 y, 3 z\rangle$, and let S be the cube with vertices $(\pm 1, \pm 1, \pm 1)$, with outward orientation. Find the surface integral of \mathbf{F} across S.

